Overblog
Editer la page Suivre ce blog Administration + Créer mon blog

Radians

I never used to understand radians. Sure, I knew how to use them in typical math problems, but splitting a circle into 2π units? Who divides a circle into six point something parts? You’ve got a useless little slice left over.

Well, remember the formula to find the circumference, C, of a circle? It’s C = πd, where d is the diameter of the circle. The diameter is simply twice the radius r, so you can also define the circumference as C = 2πr.

Consider a circle whose radius is one (the unit circle). Its circumference is simply 2π:

2pi

The circumference of a circle is the the distance around its edge. If you don’t go all the way around the unit circle, the length of the arc you do traverse should be less than 2π, right? It might be ¼π, ½π or plain old π if you only go an eighth, a quarter, or a half way around the circle.

pi4 pi2 pi

Look at the wedges created by arcs with these lengths: they describe 45, 90 and 180 degree angles. The radian equivalents of these angles are ¼π, ½π, and π.

angle-pi4 angle-pi2 angle-pi

That’s it. A radian angle measurement is the length of the biggest arc that will fit in unit pacman’s mouth!

pacman60

Their close connection with the basic geometry of circles makes radians convenient for a variety of purposes. But don’t worry, degrees are cool, too: 360, that’s what, almost as many days as there are in a year? Close enough for pagan ceremonies and government work!

 

Source : http://anoved.net/2008/02/radians/

Partager cette page
Repost0
Pour être informé des derniers articles, inscrivez vous :